skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bartlett, Michael D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For robot arms to perform everyday tasks in unstructured environments, these robots must be able to manipulate a diverse range of objects. Today’s robots often grasp objects with either soft grippers or rigid end-effectors. However, purely rigid or purely soft grippers have fundamental limitations as follows: soft grippers struggle with irregular heavy objects, whereas rigid grippers often cannot grasp small numerous items. In this article, we therefore introduce RISOs, a mechanics and controls approach for unifying traditional RIgid end-effectors with a novel class of SOft adhesives. When grasping an object, RISOs can use either the rigid end-effector (pinching the item between nondeformable fingers) and/or the soft materials (attaching and releasing items with switchable adhesives). This enhances manipulation capabilities by combining and decoupling rigid and soft mechanisms. With RISOs, robots can perform grasps along a spectrum from fully rigid, to fully soft, to rigid-soft, enabling real-time object manipulation across a 1.5 million times range in weight (from 2 mg to 2.9 kg). To develop RISOs, we first model and characterize the soft switchable adhesives. We then mount sheets of these soft adhesives on the surfaces of rigid end-effectors and develop control strategies that make it easier for robot arms and human operators to utilize RISOs. The resulting RISO grippers were able to pick up, carry, and release a larger set of objects than existing grippers, and participants also preferred using RISO. Overall, our experimental and user study results suggest that RISOs provide an exceptional gripper range in both capacity and object diversity. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  2. Metamaterial design approaches, which integrate structural elements into material systems, enable the control of uncommon behaviours by decoupling local and global properties. Leveraging this conceptual framework, metamaterial adhesives incorporate nonlinear cut architectures into adhesive films to achieve unique combinations of adhesion capacity, release, and spatial tunability by controlling how cracks propagate forward and in reverse directions during separation. Here, metamaterial adhesive designs are explored with triangular cut features while integrating hierarchical and secondary cut patterns among primary nonlinear cuts. Both cut geometry and secondary cut features tune adhesive force capacity and energy of separation. Importantly, the size and spacing of cut features must be designed around a critical length scale. When secondary cut features are greater than a critical length, cracks can be steered in multiple directions, going both forward and backwards within a primary attachment element. This control over crack dynamics enhances the work of separation by a factor of 1.5, while maintaining the peel force relative to a primary cut. If hierarchical cut features are too small or too compliant, they interact and do not distinctly modify crack behaviour. This work highlights the importance of adhesive length scales and stiffness for crack control and attachment characteristics in adhesive films. This article is part of the theme issue ‘Origami/Kirigami-inspired structures: from fundamentals to applications’. 
    more » « less
  3. The development of soft electronics requires methods to connect flexible and stretchable circuits. With conventional rigid electronics, vias are typically used to electrically connect circuits with multilayered architectures, increasing device integration and functionality. However, creating vias using soft conductors leads to additional challenges. Here we show that soft vias and planar interconnects can be created through the directed stratification of liquid metal droplets with programmed photocuring. Abnormalities that occur at the edges of a mask during ultraviolet exposure are leveraged to create vertical stair-like architectures of liquid metal droplets within the photoresin. The liquid metal droplets in the uncured (liquid) resin rapidly settle, assemble and then are fully cured, forming electrically conductive soft vias at multiple locations throughout the circuit in a parallel and spatially tunable manner. Our three-dimensional selective stratification method can also form seamless connections with planar interconnects, for in-plane and through-plane electrical integration. 
    more » « less
  4. The precise control of crack propagation at bonded interfaces is crucial for smart adhesives with advanced performance. However, previous studies have primarily concentrated on either microscale or macroscale crack propagation. Here, we present a hybrid adhesive that integrates microarchitectures and macroscopic nonlinear cut architectures for unparalleled adhesion control. The integration of these architectural elements enables conformal attachment and simultaneous crack trapping across multiple scales for high capacity, enhancing adhesion by more than 70×, while facilitating crack propagation at the macroscale in specific directions for programmable release and reusability. As adhesion strength and directionality can be independently controlled at any location, skin adhesive patches are created that are breathable, nondamaging, and exceptionally strong and secure yet remove easily. These capabilities are demonstrated with a skin-mounted adhesive patch with integrated electronics that accurately detects human motion and wirelessly transmits signals, enabling real-time control of avatars in virtual reality applications. 
    more » « less
  5. Shaping 3D objects from 2D sheets enables form and function in diverse areas from art to engineering. Here we introduce kuttsukigami, which exploits sheet-sheet adhesion to create structure. The technique allows thin sheets to be sculpted without requiring sharp folds, enabling structure in a broad range of materials for a versatile and reconfigurable thin-sheet engineering design scheme. Simple closed structures from cylindrical loops to complex shapes like the Möbius loop are constructed and modeled through the balance between deformation and adhesion. Importantly, the balance can be used to create experimental measurements of elasticity in complex morphologies. More practically, kuttsukigami is demonstrated to encapsulate objects from the kitchen to micro scales and to build on-demand logic gates through sticky electronic sheets for truly reusable, reconfigurable devices. 
    more » « less
  6. Material extrusion (MEX) of soft, multifunctional composites consisting of liquid metal (LM) droplets can enable highly tailored properties for a range of applications from soft robotics to stretchable electronics. However, an understanding of how LM ink rheology and print process parameters can reconfigure LM droplet shape during MEX processing for in-situ control of properties and function is currently limited. Herein, the material (ink viscosity, and LM droplet size) and process (nozzle velocity, height from print bed, and extrusion rate) parameters are determined which control LM microstructure during MEX of these composites. The interplay and interdependence of these parameters is evaluated and nearly spherical LM droplets are transformed into highly elongated ellipsoidal shapes with an average aspect ratio of 12.4 by systematically tuning each individual parameter. Material and process relationships are established for the LM ink which show that an ink viscosity threshold should be fulfilled to program the LM microstructure from spherical to an ellipsoidal shape during MEX. Additionally, the thin oxide layer on the LM droplets is found to play a unique and critical role in the reconfiguration and retention of droplet shape. Finally, two quantitative design maps based on material and process parameters are presented to guide MEX additive manufacturing strategies for tuning liquid droplet architecture in LM-polymer inks. The insights gained from this study enable informed design of materials and manufacturing to control microstructure of emerging multifunctional soft composites. 
    more » « less
  7. Strong adherence to underwater or wet surfaces for applications like tissue adhesion and underwater robotics is a significant challenge. This is especially apparent when switchable adhesion is required that demands rapid attachment, high adhesive capacity, and easy release. Nature displays a spectrum of permanent to reversible attachment from organisms ranging from the mussel to the octopus, providing inspiration for underwater adhesion design that has yet to be fully leveraged in synthetic systems. Here, we review the challenges and opportunities for creating underwater adhesives with a pathway to switchability. We discuss key material, geometric, modeling, and design tools necessary to achieve underwater adhesion similar to the adhesion control demonstrated in nature. Through these interdisciplinary efforts, we envision that bioinspired adhesives can rise to or even surpass the extraordinary capabilities found in biological systems. 
    more » « less